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1. Introduction. Additive representations of natural numbers by mixtures of
squares, cubes and biquadrates belong to the class of more interesting special cases
which form the object of attention for testing the general expectation that any
sufficiently large natural number n is representable in the form

xk1
1 + xk2

2 + · · ·+ xks
s = n,

as soon as the reciprocal sum
∑s

j=1 k−1
j is reasonably large. With the exception

of a handful of very special problems, in the current state of knowledge the latter
reciprocal sum must exceed 2, at the very least, in order that it be feasible to
successfully apply the Hardy-Littlewood method to treat the corresponding additive
problem. Here we remove a case from the list of those combinations of exponents
which have defied treatment thus far.

Theorem. Let ν(n) denote the number of representations of the natural number n
as the sum of a square, four cubes and a biquadrate. Then ν(n) � n13/12.

We remark that the lower bound for ν(n) provided by our theorem is of the
same order of magnitude as the main term of the conjectured asymptotic formula
for ν(n) predicted by a formal application of the circle method. Our result, as well
as the method of proof, should be compared with the work of Vaughan [11], who
obtained a theorem of similar strength for the sum of one square and five cubes.
Although our proof has many features in common with Vaughan’s treatment, it
should be stressed that the problem under consideration here seems to require
tools which became available only very recently. In this context we direct the
reader’s attention to the use of “breaking classical convexity” (see Wooley [15]),
which supplies a good bound for the fifth moment of a cubic smooth Weyl sum,
and a refined treatment of a classical cubic Weyl sum restricted to excessively large
major arcs (see Brüdern [3]). It would appear to be difficult to establish our theorem
without these two tools. In this context we remark that, subject to the truth of

1 Packard Fellow, and supported in part by NSF grant DMS-9622773. The second author
is grateful to the Mathematisches Institut A at Stuttgart for its generous hospitality during the

period in which this paper was written.

Typeset by AMS-TEX

1
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an unproved hypothesis concerning certain Hasse-Weil L-functions, one has sharp
estimates for the sixth moment of the cubic Weyl sum due to Hooley [8] and Heath-
Brown [6], and these would permit the proof of a conditional asymptotic formula
for ν(n).

For other results on mixed sums of squares, cubes and fourth powers we refer the
reader to Hooley [7], Brüdern [1], Kawada and Wooley [9] and Brüdern, Kawada
and Wooley [4].

Throughout, ε will denote a sufficiently small positive number. We use � and
� to denote Vinogradov’s well-known notation, with implicit constants depending
at most on ε. Throughout, the letter p will denote a prime number. In an effort to
simplify our analysis, we adopt the following convention concerning the number ε.
Whenever ε appears in a statement, either implicitly or explicitly, we assert that for
each ε > 0, the statement holds for sufficiently large values of the main parameter.
Note that the “value” of ε may consequently change from statement to statement,
and hence also the dependence of implicit constants on ε.

2. Preliminaries. We first set the scene with some notation. Let n be a large
natural number, and write

Pk = n1/k (k = 2, 3, 4), M = P
1/9
4 and L = (log n)1/100. (1)

We define the set of R-smooth numbers up to P by

A∗(P,R) = {n ∈ [P/2, P ] ∩ Z : p|n implies p ≤ R}.

Let η be a small positive number to be chosen later, and define the exponential
sums

f(α) =
∑

1≤x≤P2

e(αx2), g(α) =
∑

y∈A∗(P3,P η
3 )

e(αy3)

and
h(α) =

∑
M<p≤M1+η

∑
1≤z≤P4/p

e(α(pz)4). (2)

Also, we require the weighted exponential sum

G(α) =
∑

1≤x≤2P3

Γ(x/P3)e(αx3),

where
Γ(t) = exp(−1/(1− (t− 1)2)).

Whenever it is convenient so to do, and confusion is easily avoided, we omit mention
of the parameter α from the exponential sums f(α), G(α), g(α) and h(α).

Finally, we define the integral

ν0(n) =
∫ 1

0

f(α)G(α)g(α)3h(α)e(−αn)dα, (3)

and observe that one has
ν(n) � ν0(n). (4)
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3. Auxiliary mean value estimates. Before launching our application of the
Hardy-Littlewood method, it is convenient to record the various mean value esti-
mates which have prompted our recondite choice of generating functions.

First we recall from the proof of Theorem 1.2 of Wooley [15] that whenever η is
a sufficiently small positive number, as we henceforth assume, one has∫ 1

0

|g(α)|5dα � P
44/17
3 . (5)

Next we record the simple bound∫ 1

0

|G(α)|4dα � P 2+ε
3 , (6)

which follows on interpreting the integral as a weighted sum over the solutions of
the equation x3

1 +x3
2 = x3

3 +x3
4, with 1 ≤ xi ≤ 2P3 (1 ≤ i ≤ 4), and applying Hua’s

Lemma (see, for example, Lemma 2.5 of Vaughan [13]).
Finally, we consider the mean value

V =
∫ 1

0

|g(α)2h(α)4|dα. (7)

On applying Hölder’s inequality to the exponential sum (2), one obtains

|h(α)|4 ≤ M3(1+η)
∑

M<p≤M1+η

∣∣∣ ∑
1≤z≤P4/p

e(α(pz)4)
∣∣∣4.

Substituting the latter inequality into (7), it follows from a consideration of the
underlying diophantine system that V ≤ M3(1+η)V0, where V0 denotes the number
of integral solutions of the equation

x3
1 − x3

2 = p4(y4
1 + y4

2 − y4
3 − y4

4) (8)

subject to

xi ∈ A∗(P3, P
η
3 ) (i = 1, 2), M < p ≤ M1+η and 1 ≤ yj ≤ P4/p (1 ≤ j ≤ 4).

Since P η
3 < M , we find that in any solution x,y, p of (8) counted by V0, one

has p - x1x2. Consequently, on dividing up the range for p into dyadic intervals,
the bound V0 � P 1+ε

3 M1+η(P4/M)2 is an immediate consequence of Lemma 1 of
Brüdern [2]. We therefore infer that

V � P 1+ε
3 P 2

4 M2+4η. (9)
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4. Initial pruning. We define our Hardy-Littlewood dissection of the unit interval
as follows. When 1 ≤ X ≤ 1

2P2, we define the major arcs M(X) to be the union of
the intervals

M(q, a;X) = {α ∈ [0, 1) : |qα− a| ≤ Xn−1},

with 0 ≤ a ≤ q ≤ X and (a, q) = 1. In the interests of brevity, we then write

M = M(n10/21), N = M(n13/42), K = M(L).

Finally, we define the minor arcs m by m = [0, 1) \M.
The contribution of the minor arcs to ν0(n) is easily bounded by applying the

mean value estimates of the previous section together with Weyl’s inequality. For
the latter inequality (see Lemma 2.4 of Vaughan [13]) yields the estimate

sup
α∈m

|f(α)| � P
11/21+ε
2 ,

whence, on recalling (5)-(7) and (9), it follows from Hölder’s inequality that∫
m

|fGg3h|dα � P
11/21+ε
2 V 1/4

(∫ 1

0

|g|5dα
)1/2(∫ 1

0

|G|4dα
)1/4

� P
11/21+2ε
2

(
P3P

2
4 M2+4η

)1/4

(P 44/17
3 )1/2(P 2

3 )1/4.

In view of (1), a modicum of computation therefore reveals that∫
m

|f(α)G(α)g(α)3h(α)|dα � n
13
12−η. (10)

In order to prune the major arcs M back to the narrower set of arcs N, we make
use of Theorem 2 of Brüdern [3], which establishes that for 1 ≤ X ≤ P

10/7
3 , one has∫

M(X)

|G(α)|4dα � nε(X7/2P−3
3 + X2P−1

3 + P3).

For each X with 1 ≤ X ≤ 1
2P2, write M∗(X) = M(X)\M( 1

2X). Then since Weyl’s
inequality supplies the bound

sup
α∈M∗(X)

|f(α)| � P 1+ε
2 X−1/2,

it follows that for n13/42 ≤ X ≤ n10/21, one has∫
M∗(X)

|f(α)G(α)|4dα � nε(X3/2n + n5/3 + n7/3X−2) � n12/7+ε.
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A dyadic dissection therefore shows that∫
M\N

|f(α)G(α)|4dα � n12/7+ε,

whence by applying Hölder’s inequality and recalling (5)-(7) and (9), we obtain∫
M\N

|fGg3h|dα � V 1/4
(∫ 1

0

|g|5dα
)1/2(∫

M\N
|fG|4dα

)1/4

� n
13
12−η.

On recalling (10), (3) and (4) we may conclude thus far that

ν(n) �
∫

N

f(α)G(α)g(α)3h(α)e(−αn)dα + O(n13/12−η). (11)

5. Further pruning. The next step in the pruning argument is more routine
and can be handled in many ways. We take a route economical in terms of space,
though not so economical in its use of the literature. We note first that the number
of representations of an integer n in the form n = pz, with M < p ≤ M1+η

and 1 ≤ z ≤ P4/p, is at most O(1). Consequently, the argument of the proof of
Théorème 2′(i) of Tenenbaum [10] (see §2, and in particular the estimation of W
on p.235) provides the estimate∫ 1

0

|f(α)2h(α)4|dα � nLε. (12)

Next observe that a standard application of the Hardy-Littlewood method (see, for
example, §2 of Vaughan [13]) shows that whenever t > 4 is real, one has∫ 1

0

|f(α)|tdα � P t−2
2 . (13)

Moreover the work of §2 of Brüdern [3], in combination with the methods of §4.4
of Vaughan [13], reveals that whenever X is a real number with 1 ≤ X ≤ P

1/2
3 and

t > 4, then one has ∫
N\M(X)

|G(α)|tdα � P t−3
3 Xε−(t−4)/3. (14)

We remark that in our application of the latter estimate below, we take X = L.
Finally, as a consequence of Theorem 2 of Brüdern and Wooley [5], it follows that
whenever t > 77

10 one has ∫ 1

0

|g(α)|tdα � P t−3. (15)
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An application of Hölder’s inequality now yields∫
N\K

|fGg3h|dα

�
(∫ 1

0

|f2h4|dα
) 1

4
(∫ 1

0

|g| 16421 dα
) 63

164
(∫

N\K
|G| 4110 dα

) 10
41

(∫ 1

0

|f | 4110 dα
) 5

41
,

so that on making use of the estimates (12)-(15), we deduce from (11) that

ν(n) �
∫

K

f(α)G(α)g(α)3h(α)e(−αn)dα + O(n13/12L−η). (16)

6. The denouement. The major arcs K are extremely narrow, and thus it is
essentially a routine matter to replace the generating functions f , G, g and h by
their respective standard major arc approximants. When k = 2, 3 or 4, write

Sk(q, a) =
q∑

r=1

e(ark/q)

and write also

vk(β) =
∫ Pk

0

e(βγk)dγ (k = 2, 4), v3(β) =
∫ P3

P3/2

e(βγ3)dγ.

Further, when α ∈ M(q, a;L) ⊆ K, define

wk(α) = q−1Sk(q, a)vk(α− a/q).

Then by Theorem 4.1 of Vaughan [13], one has

sup
α∈K

|f(α)− w2(α)| � L.

Also, it follows from Lemma 8.5 of Wooley [14] (see also Lemma 5.4 of Vaughan
[12] for a related conclusion) that there exists a positive number c, depending only
on η, such that

sup
α∈K

|g(α)− cw3(α)| � P3L
−10.

Suppose next that α ∈ M(q, a;L) ⊆ K. Then on recalling (2), it is apparent
from Theorem 4.1 of Vaughan [13] that

h(α) =
∑

M<p≤M1+η

(
q−1S4(q, ap4)

∫ P4/p

0

e(p4γ4(α− a/q))dγ + O(q1/2+ε)
)
.

However, the condition p > M occurring in the summation, together with the
implicit hypothesis that q ≤ L < M , ensures that p - q, and so by a change of
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variable one finds that for each prime p occurring in the latter summation, one has
S4(q, ap4) = S4(q, a). Thus, following an obvious change of variable, we arrive at
the conclusion

sup
α∈K

|h(α)− Ξw4(α)| � M1+2η,

where
Ξ =

∑
M<p≤M1+η

p−1.

We note for future reference that elementary prime number theory supplies the
estimate Ξ = log(1 + η) + O(L−10).

Finally, on writing

V (β) =
∫ 2P3

0

Γ(γ/P3)e(βγ3)dγ,

and defining the function W (α) for α ∈ M(q, a;L) ⊆ K by

W (α) = q−1S3(q, a)V (α− a/q),

we find that Lemma 2 of Brüdern [3] supplies the bound

sup
α∈K

|G(α)−W (α)| � 1.

Collecting together the above estimates, and writing

T (q, a) = q−6S2(q, a)S3(q, a)4S4(q, a)

and
u(β) = v2(β)V (β)v3(β)3v4(β),

we deduce that when α ∈ M(q, a;L) ⊆ K, one has

|f(α)G(α)g(α)3h(α)− Ξc3T (q, a)u(α− a/q)| � P2P
4
3 P4L

−10.

Since the measure of K is O(L2n−1), it follows that∫
K

f(α)G(α)g(α)3h(α)e(−αn)dα

=Ξc3
∑

1≤q≤L

q∑
a=1

(a,q)=1

T (q, a)e(−an/q)
∫ L/(qn)

−L/(qn)

u(β)e(−βn)dβ

+ O(n13/12L−1). (17)

The bounds

T (q, a) � qε−25/12 and u(β) � n25/12(1 + n|β|)−25/12
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are immediate from Lemma 2.8 and Theorem 4.2 of Vaughan [13], together with
Lemma 7 of Brüdern [3]. Thus a routine argument permits the replacement of the
integral in (17) by the singular integral

I(n) =
∫ ∞

−∞
u(β)e(−βn)dβ,

and also allows the completion of the sum in (17) to the singular series

S(n) =
∞∑

q=1

q∑
a=1

(a,q)=1

T (q, a)e(−an/q),

with acceptable errors which contribute at most O(n13/12L−1/20) within (17). More-
over, standard endgame technique from the theory of the Hardy-Littlewood method,
which we omit here in the interest of saving space, demonstrates with ease that
S(n) � 1 and I(n) � n13/12. Thus, on recalling (16), we arrive at the lower bound

ν(n) � Ξc3S(n)I(n) + O(n13/12L−η) � n13/12,

and the proof of our theorem is complete.
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